A Self-organizing Power System Stabilizer using Fuzzy Auto-Regressive Moving Average (FARMA) Model

نویسندگان

  • Young-Moon Park
  • Kwang Y. Lee
چکیده

This paper presents a self-organizing power system stabilizer (SOPSS) which use the fuzzy Auto-Regressive Moving Average (FARMA) model. The control rules and the membership functions of proposed the fuzzy logic controller are generated automatically without using any plant model. The generated rules are stored in the fuzzy rule space and updated on-line by a self-organizing procedure. To show the effectiveness of the proposed controller, comparison with a conventional controller for one-machine infinite-bus system is presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using a Fuzzy Auto Regressive Integrated Moving Average Model for Exchange Rate Forecasting

Forecasting models have wide applications in decision making. In the real world, rapid changes normally take place in different areas, specifically in financial markets. Collecting the required data is a main problem for forecasters in such unstable environments. Forecasting methods such as Auto Regressive Integrated Moving Average (ARIMA) models and also Artificial Neural Networks (ANNs) need ...

متن کامل

Using a Fuzzy Auto Regressive Integrated Moving Average Model for Exchange Rate Forecasting

Forecasting models have wide applications in decision making. In the real world, rapid changes normally take place in different areas, specifically in financial markets. Collecting the required data is a main problem for forecasters in such unstable environments. Forecasting methods such as Auto Regressive Integrated Moving Average (ARIMA) models and also Artificial Neural Networks (ANNs) need ...

متن کامل

Comparison of autoregressive integrated moving average (ARIMA) model and adaptive neuro-fuzzy inference system (ANFIS) model

Proper models for prediction of time series data can be an advantage in making important decisions. In this study, we tried with the comparison between one of the most useful classic models of economic evaluation, auto-regressive integrated moving average model and one of the most useful artificial intelligence models, adaptive neuro-fuzzy inference system (ANFIS), investigate modeling procedur...

متن کامل

Electricity Load Forecasting by Combining Adaptive Neuro-fuzzy Inference System and Seasonal Auto-Regressive Integrated Moving Average

Nowadays, electricity load forecasting, as one of the most important areas, plays a crucial role in the economic process. What separates electricity from other commodities is the impossibility of storing it on a large scale and cost-effective construction of new power generation and distribution plants. Also, the existence of seasonality, nonlinear complexity, and ambiguity pattern in electrici...

متن کامل

Application of an Additive Self-tuning Controller for Static Synchronous Series Compensator for Damping of Sub-synchronous Resonance Oscillations

In this paper, an additive self-tuning (ST) control scheme is presented for a static synchronous series compensator (SSSC) to improve performance of conventional PI control system for damping sub-synchronous resonance (SSR) oscillations. The active and reactve series compensation are provided by a three-level 24-pulse SSSC and fixed capacitor. The proposed ST controller consists of a pole shift...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004